Compare commits

...

4 commits

Author SHA1 Message Date
Chandler Swift 5c64282793
Add relevant xkcd 2024-11-11 23:05:56 -06:00
Chandler Swift 6ec317688f
Deploy to bert, not zirconium
New server time\!
2024-11-11 23:05:39 -06:00
Chandler Swift 2412d8de79
Add venv to gitignore 2024-11-11 23:05:18 -06:00
Chandler Swift 6e28990290
Add MN crop history by county layer 2024-11-11 23:04:36 -06:00
7 changed files with 195 additions and 1 deletions

2
.gitignore vendored
View file

@ -5,4 +5,6 @@ dist
layers/dot-cams/*/data/states.js
layers/survey-markers/states.js
layers/tjx/data/chains.js
layers/crop-history/data/counties.js
.direnv
venv

View file

@ -1,6 +1,6 @@
.PHONY: deploy
deploy: build
rsync --archive --verbose --delete dist/ zirconium.home.chandlerswift.com:/var/www/maps.chandlerswift.com/
rsync --archive --verbose --delete dist/ root@bert:/srv/maps.chandlerswift.com/
.PHONY: clean
clean:

View file

@ -1,5 +1,7 @@
# maps.chandlerswift.com
[![XKCD 2054: "Data Pipeline"](https://imgs.xkcd.com/comics/data_pipeline_2x.png '"Is the pipeline literally running from your laptop?" "Don't be silly, my laptop disconnects far too often to host a service we rely on. It's running on my phone."')](https://xkcd.com/2054/)
- [ ] My location (from whereis.chandlerswift.com)
- [ ] Menards
- [ ] Culver's

View file

@ -0,0 +1,60 @@
#!/usr/bin/python
import geopandas as gpd
import os
import fiona
import sys
import csv
states_to_include = ["MN"]
state_fipses_to_include = []
county_lookup = {}
print("Reading county census data...")
with open('national_cousub2020.txt') as csvfile:
reader = csv.DictReader(csvfile, delimiter='|')
for row in reader:
if row['STATE'] in states_to_include:
state_fipses_to_include.append(row['STATEFP'])
county_lookup[row['STATEFP'] + row['COUNTYFP']] = row
input_file = sys.argv[1]
print("Reading input gdb...")
gdf = gpd.read_file(input_file)
gdf = gdf[gdf['STATEFIPS'].isin(state_fipses_to_include)]
print("Reprojecting...")
gdf = gdf.to_crs("EPSG:4326")
print("Simplifying geometry...")
gdf['geometry'] = gdf['geometry'].simplify(0.0001, preserve_topology=True)
print("Calculating FULLFIPS...")
gdf['FULLFIPS'] = gdf['STATEFIPS'].astype(str) + gdf['CNTYFIPS'].astype(str)
print("Finding unique FULLFIPS...")
counties = gdf['FULLFIPS'].unique()
# TODO: Trim down which fields are included
#
# "CSBID", "CSBYEARS", "CSBACRES",
# "CDL2016", "CDL2017", "CDL2018", "CDL2019", "CDL2020", "CDL2021", "CDL2022", "CDL2023",
# "STATEFIPS", "STATEASD", "ASD", "CNTY", "CNTYFIPS",
# "INSIDE_X", "INSIDE_Y", "Shape_Length", "Shape_Area", "FULLFIPS"
for i, county in enumerate(counties, 1):
print(f"Processing county ({county}): {i}/{len(counties)}")
county_gdf = gdf[gdf['FULLFIPS'] == county]
output_file = f"{county}.geojson"
county_gdf.to_file(os.path.join("data", output_file), driver="GeoJSON", COORDINATE_PRECISION=5)
with open('data/counties.js', 'w') as f:
for county in counties:
f.write(f"import county{county} from './{county}.geojson?url';\n")
f.write('\nexport default {\n')
for county in counties:
county_name = county_lookup[county]['COUNTYNAME']
state_name = county_lookup[county]['STATE']
f.write(f" '{county_name}, {state_name}': county{county},\n")
f.write("};\n")

17
layers/crop-history/get_data.sh Executable file
View file

@ -0,0 +1,17 @@
#!/usr/bin/env nix-shell
#! nix-shell -i bash --pure
#! nix-shell -p bash wget unzip python3 python3Packages.geopandas python3Packages.fiona python3Packages.pyproj
# TODO: do I need all the python packages?
set -x -euo pipefail
wget -nc https://www.nass.usda.gov/Research_and_Science/Crop-Sequence-Boundaries/datasets/NationalCSB_2016-2023_rev23.zip
wget -nc https://www2.census.gov/geo/docs/reference/codes2020/national_cousub2020.txt
unzip -u NationalCSB_2016-2023_rev23.zip
mkdir -p data
# HEADS UP: this script takes something like 40GB of RAM. In theory, I could
# probably do something clever with streaming...but I have 40 GB of RAM, so this
# works!
python -i extract_counties.py NationalCSB_2016-2023_rev23/CSB1623.gdb

View file

@ -0,0 +1,111 @@
import VectorLayer from 'ol/layer/Vector';
import {Vector as VectorSource} from 'ol/source.js';
import GeoJSON from 'ol/format/GeoJSON.js';
import {Style} from 'ol/style.js';
import counties from './data/counties.js';
// from https://www.nass.usda.gov/Research_and_Science/Crop-Sequence-Boundaries/metadata_Crop-Sequence-Boundaries-2023.htm
const crops = {
"1": "Corn",
"2": "Cotton",
"3": "Rice",
"4": "Sorghum",
"5": "Soybeans",
"6": "Sunflower",
"10": "Peanuts",
"11": "Tobacco",
"12": "Sweet Corn",
"13": "Pop or Orn Corn",
"14": "Mint",
"21": "Barley",
"22": "Durum Wheat",
"23": "Spring Wheat",
"24": "Winter Wheat",
"25": "Other Small Grains",
"26": "Dbl Crop WinWht/Soybeans",
"27": "Rye",
"28": "Oats",
"29": "Millet",
"30": "Speltz",
"31": "Canola",
"32": "Flaxseed",
"33": "Safflower",
"34": "Rape Seed",
"35": "Mustard",
"36": "Alfalfa",
"37": "Other Hay/Non Alfalfa",
"38": "Camelina",
"39": "Buckwheat",
"41": "Sugarbeets",
"42": "Dry Beans",
"43": "Potatoes",
"44": "Other Crops",
"45": "Sugarcane",
"46": "Sweet Potatoes",
"47": "Misc Vegs & Fruits",
"48": "Watermelons",
"49": "Onions",
"50": "Cucumbers",
"51": "Chick Peas",
"52": "Lentils",
"53": "Peas",
"54": "Tomatoes",
"55": "Caneberries",
"56": "Hops",
"57": "Herbs",
"58": "Clover/Wildflowers",
"59": "Sod/Grass Seed",
"60": "Switchgrass",
}
const category = {
name: "County Crop History",
details: `<a href="https://www.nass.usda.gov/Research_and_Science/Crop-Sequence-Boundaries/index.php">https://www.nass.usda.gov/Research_and_Science/Crop-Sequence-Boundaries/index.php</a>`,
layers: [],
};
for (let [county, url] of Object.entries(counties)) {
const geojsonSource = new VectorSource({
url: url,
format: new GeoJSON,
});
geojsonSource.on('featuresloadend', function(event) {
event.features.forEach(feature => {
for (let year = 2016; year <= 2023; year++) {
const cropid = feature.get(`CDL${year}`);
// Check if the value exists in the key, then replace it
if (cropid in crops) {
feature.set(String(year), crops[cropid]);
} else {
feature.set(String(year), cropid);
}
feature.unset(`CDL${year}`);
}
});
});
const vectorLayer = new VectorLayer({
source: geojsonSource,
});
category.layers.push({
name: county,
layer: vectorLayer,
});
}
category.layers.sort(function (a, b) {
const a_state = a.name.substr(a.length - 2);
const b_state = a.name.substr(b.length - 2);
// Sort by state...
if (a_state != b_state) {
return a_state > b_state ? 1 : -1;
}
// ...then by county
return a.name > b.name ? 1 : -1;
});
export default category;

View file

@ -20,6 +20,7 @@ import dot_cams from './dot-cams/index.js';
import survey_markers from './survey-markers/index.js';
import tjx from './tjx/index.js';
import minnesotaAdventureTrails from './minnesota-adventure-trails/index.js';
import cropHistory from './crop-history/index.js';
const layerCategories = [
{ // Base maps
@ -103,6 +104,7 @@ const layerCategories = [
cellular,
light_pollution,
tjx,
cropHistory,
];
export default layerCategories;