Compare commits
No commits in common. "5c642827933307dbf609a6d4d7e6a99f2ec0b005" and "5859795b3e552bbbdb9c7f1a8f23c80589adb063" have entirely different histories.
5c64282793
...
5859795b3e
2
.gitignore
vendored
2
.gitignore
vendored
|
@ -5,6 +5,4 @@ dist
|
|||
layers/dot-cams/*/data/states.js
|
||||
layers/survey-markers/states.js
|
||||
layers/tjx/data/chains.js
|
||||
layers/crop-history/data/counties.js
|
||||
.direnv
|
||||
venv
|
||||
|
|
2
Makefile
2
Makefile
|
@ -1,6 +1,6 @@
|
|||
.PHONY: deploy
|
||||
deploy: build
|
||||
rsync --archive --verbose --delete dist/ root@bert:/srv/maps.chandlerswift.com/
|
||||
rsync --archive --verbose --delete dist/ zirconium.home.chandlerswift.com:/var/www/maps.chandlerswift.com/
|
||||
|
||||
.PHONY: clean
|
||||
clean:
|
||||
|
|
|
@ -1,7 +1,5 @@
|
|||
# maps.chandlerswift.com
|
||||
|
||||
[![XKCD 2054: "Data Pipeline"](https://imgs.xkcd.com/comics/data_pipeline_2x.png '"Is the pipeline literally running from your laptop?" "Don't be silly, my laptop disconnects far too often to host a service we rely on. It's running on my phone."')](https://xkcd.com/2054/)
|
||||
|
||||
- [ ] My location (from whereis.chandlerswift.com)
|
||||
- [ ] Menards
|
||||
- [ ] Culver's
|
||||
|
|
|
@ -1,60 +0,0 @@
|
|||
#!/usr/bin/python
|
||||
|
||||
import geopandas as gpd
|
||||
import os
|
||||
import fiona
|
||||
import sys
|
||||
import csv
|
||||
|
||||
states_to_include = ["MN"]
|
||||
|
||||
state_fipses_to_include = []
|
||||
county_lookup = {}
|
||||
print("Reading county census data...")
|
||||
with open('national_cousub2020.txt') as csvfile:
|
||||
reader = csv.DictReader(csvfile, delimiter='|')
|
||||
for row in reader:
|
||||
if row['STATE'] in states_to_include:
|
||||
state_fipses_to_include.append(row['STATEFP'])
|
||||
county_lookup[row['STATEFP'] + row['COUNTYFP']] = row
|
||||
|
||||
input_file = sys.argv[1]
|
||||
|
||||
print("Reading input gdb...")
|
||||
gdf = gpd.read_file(input_file)
|
||||
gdf = gdf[gdf['STATEFIPS'].isin(state_fipses_to_include)]
|
||||
|
||||
print("Reprojecting...")
|
||||
gdf = gdf.to_crs("EPSG:4326")
|
||||
|
||||
print("Simplifying geometry...")
|
||||
gdf['geometry'] = gdf['geometry'].simplify(0.0001, preserve_topology=True)
|
||||
|
||||
print("Calculating FULLFIPS...")
|
||||
gdf['FULLFIPS'] = gdf['STATEFIPS'].astype(str) + gdf['CNTYFIPS'].astype(str)
|
||||
|
||||
print("Finding unique FULLFIPS...")
|
||||
counties = gdf['FULLFIPS'].unique()
|
||||
|
||||
# TODO: Trim down which fields are included
|
||||
#
|
||||
# "CSBID", "CSBYEARS", "CSBACRES",
|
||||
# "CDL2016", "CDL2017", "CDL2018", "CDL2019", "CDL2020", "CDL2021", "CDL2022", "CDL2023",
|
||||
# "STATEFIPS", "STATEASD", "ASD", "CNTY", "CNTYFIPS",
|
||||
# "INSIDE_X", "INSIDE_Y", "Shape_Length", "Shape_Area", "FULLFIPS"
|
||||
|
||||
for i, county in enumerate(counties, 1):
|
||||
print(f"Processing county ({county}): {i}/{len(counties)}")
|
||||
county_gdf = gdf[gdf['FULLFIPS'] == county]
|
||||
output_file = f"{county}.geojson"
|
||||
county_gdf.to_file(os.path.join("data", output_file), driver="GeoJSON", COORDINATE_PRECISION=5)
|
||||
|
||||
with open('data/counties.js', 'w') as f:
|
||||
for county in counties:
|
||||
f.write(f"import county{county} from './{county}.geojson?url';\n")
|
||||
f.write('\nexport default {\n')
|
||||
for county in counties:
|
||||
county_name = county_lookup[county]['COUNTYNAME']
|
||||
state_name = county_lookup[county]['STATE']
|
||||
f.write(f" '{county_name}, {state_name}': county{county},\n")
|
||||
f.write("};\n")
|
|
@ -1,17 +0,0 @@
|
|||
#!/usr/bin/env nix-shell
|
||||
#! nix-shell -i bash --pure
|
||||
#! nix-shell -p bash wget unzip python3 python3Packages.geopandas python3Packages.fiona python3Packages.pyproj
|
||||
# TODO: do I need all the python packages?
|
||||
|
||||
set -x -euo pipefail
|
||||
|
||||
wget -nc https://www.nass.usda.gov/Research_and_Science/Crop-Sequence-Boundaries/datasets/NationalCSB_2016-2023_rev23.zip
|
||||
wget -nc https://www2.census.gov/geo/docs/reference/codes2020/national_cousub2020.txt
|
||||
unzip -u NationalCSB_2016-2023_rev23.zip
|
||||
|
||||
mkdir -p data
|
||||
|
||||
# HEADS UP: this script takes something like 40GB of RAM. In theory, I could
|
||||
# probably do something clever with streaming...but I have 40 GB of RAM, so this
|
||||
# works!
|
||||
python -i extract_counties.py NationalCSB_2016-2023_rev23/CSB1623.gdb
|
|
@ -1,111 +0,0 @@
|
|||
import VectorLayer from 'ol/layer/Vector';
|
||||
import {Vector as VectorSource} from 'ol/source.js';
|
||||
import GeoJSON from 'ol/format/GeoJSON.js';
|
||||
|
||||
import {Style} from 'ol/style.js';
|
||||
|
||||
import counties from './data/counties.js';
|
||||
|
||||
// from https://www.nass.usda.gov/Research_and_Science/Crop-Sequence-Boundaries/metadata_Crop-Sequence-Boundaries-2023.htm
|
||||
const crops = {
|
||||
"1": "Corn",
|
||||
"2": "Cotton",
|
||||
"3": "Rice",
|
||||
"4": "Sorghum",
|
||||
"5": "Soybeans",
|
||||
"6": "Sunflower",
|
||||
"10": "Peanuts",
|
||||
"11": "Tobacco",
|
||||
"12": "Sweet Corn",
|
||||
"13": "Pop or Orn Corn",
|
||||
"14": "Mint",
|
||||
"21": "Barley",
|
||||
"22": "Durum Wheat",
|
||||
"23": "Spring Wheat",
|
||||
"24": "Winter Wheat",
|
||||
"25": "Other Small Grains",
|
||||
"26": "Dbl Crop WinWht/Soybeans",
|
||||
"27": "Rye",
|
||||
"28": "Oats",
|
||||
"29": "Millet",
|
||||
"30": "Speltz",
|
||||
"31": "Canola",
|
||||
"32": "Flaxseed",
|
||||
"33": "Safflower",
|
||||
"34": "Rape Seed",
|
||||
"35": "Mustard",
|
||||
"36": "Alfalfa",
|
||||
"37": "Other Hay/Non Alfalfa",
|
||||
"38": "Camelina",
|
||||
"39": "Buckwheat",
|
||||
"41": "Sugarbeets",
|
||||
"42": "Dry Beans",
|
||||
"43": "Potatoes",
|
||||
"44": "Other Crops",
|
||||
"45": "Sugarcane",
|
||||
"46": "Sweet Potatoes",
|
||||
"47": "Misc Vegs & Fruits",
|
||||
"48": "Watermelons",
|
||||
"49": "Onions",
|
||||
"50": "Cucumbers",
|
||||
"51": "Chick Peas",
|
||||
"52": "Lentils",
|
||||
"53": "Peas",
|
||||
"54": "Tomatoes",
|
||||
"55": "Caneberries",
|
||||
"56": "Hops",
|
||||
"57": "Herbs",
|
||||
"58": "Clover/Wildflowers",
|
||||
"59": "Sod/Grass Seed",
|
||||
"60": "Switchgrass",
|
||||
}
|
||||
|
||||
const category = {
|
||||
name: "County Crop History",
|
||||
details: `<a href="https://www.nass.usda.gov/Research_and_Science/Crop-Sequence-Boundaries/index.php">https://www.nass.usda.gov/Research_and_Science/Crop-Sequence-Boundaries/index.php</a>`,
|
||||
layers: [],
|
||||
};
|
||||
|
||||
for (let [county, url] of Object.entries(counties)) {
|
||||
const geojsonSource = new VectorSource({
|
||||
url: url,
|
||||
format: new GeoJSON,
|
||||
});
|
||||
|
||||
geojsonSource.on('featuresloadend', function(event) {
|
||||
event.features.forEach(feature => {
|
||||
for (let year = 2016; year <= 2023; year++) {
|
||||
const cropid = feature.get(`CDL${year}`);
|
||||
|
||||
// Check if the value exists in the key, then replace it
|
||||
if (cropid in crops) {
|
||||
feature.set(String(year), crops[cropid]);
|
||||
} else {
|
||||
feature.set(String(year), cropid);
|
||||
}
|
||||
feature.unset(`CDL${year}`);
|
||||
}
|
||||
});
|
||||
});
|
||||
const vectorLayer = new VectorLayer({
|
||||
source: geojsonSource,
|
||||
});
|
||||
|
||||
category.layers.push({
|
||||
name: county,
|
||||
layer: vectorLayer,
|
||||
});
|
||||
}
|
||||
|
||||
category.layers.sort(function (a, b) {
|
||||
const a_state = a.name.substr(a.length - 2);
|
||||
const b_state = a.name.substr(b.length - 2);
|
||||
// Sort by state...
|
||||
if (a_state != b_state) {
|
||||
return a_state > b_state ? 1 : -1;
|
||||
}
|
||||
// ...then by county
|
||||
return a.name > b.name ? 1 : -1;
|
||||
});
|
||||
|
||||
export default category;
|
|
@ -20,7 +20,6 @@ import dot_cams from './dot-cams/index.js';
|
|||
import survey_markers from './survey-markers/index.js';
|
||||
import tjx from './tjx/index.js';
|
||||
import minnesotaAdventureTrails from './minnesota-adventure-trails/index.js';
|
||||
import cropHistory from './crop-history/index.js';
|
||||
|
||||
const layerCategories = [
|
||||
{ // Base maps
|
||||
|
@ -104,7 +103,6 @@ const layerCategories = [
|
|||
cellular,
|
||||
light_pollution,
|
||||
tjx,
|
||||
cropHistory,
|
||||
];
|
||||
|
||||
export default layerCategories;
|
||||
|
|
Loading…
Reference in a new issue